A Novel Automatic Modulation Classification Method Using Attention Mechanism and Hybrid Parallel Neural Network

نویسندگان

چکیده

Automatic Modulation Classification (AMC) is of paramount importance in wireless communication systems. Existing methods usually adopt a single category neural network or stack different categories networks series, and rarely extract types features simultaneously proper way. When it comes to the output layer, softmax function applied for classification expand inter-class distance. In this paper, we propose hybrid parallel AMC problem. Our proposed method designs structure which utilizes Convolution Neural Network (CNN) Gate Rate Unit (GRU) spatial temporal respectively. Instead superposing these two directly, three attention mechanisms are assign weights features. Finally, cosine similarity metric named Additive Margin function, can distance compress intra-class simultaneously, adopted output. Simulation results demonstrate that achieve remarkable performance on an open access dataset.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Classification Method using Artificial Neural Network Based Decision Tree for Automatic Sleep Scoring

In this paper we propose a new classification method for automatic sleep scoring using an artificial neural network based decision tree. It attempts to treat sleep scoring progress as a series of two-class problems and solves them with a decision tree made up of a group of neural network classifiers, each of which uses a special feature set and is aimed at only one specific sleep stage in order...

متن کامل

A Hybrid Neural Network Approach for Kinematic Modeling of a Novel 6-UPS Parallel Human-Like Mastication Robot

Introduction we aimed to introduce a 6-universal-prismatic-spherical (UPS) parallel mechanism for the human jaw motion and theoretically evaluate its kinematic problem. We proposed a strategy to provide a fast and accurate solution to the kinematic problem. The proposed strategy could accelerate the process of solution-finding for the direct kinematic problem by reducing the number of required ...

متن کامل

Novel Automatic Modulation Classification using Correntropy Coefficient

This paper deals with automatic modulation classification (AMC) of communication signals. A new method for the automatic classification using a similarity measure derived from Information Theoretic Learning (ITL), called correntropy coefficient, is proposed. Unlike many of the conventional methods, the proposed method does not require any signal pre-processing. Further, the proposed AMC techniq...

متن کامل

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

Dimensionality Reduction and Improving the Performance of Automatic Modulation Classification using Genetic Programming (RESEARCH NOTE)

This paper shows how we can make advantage of using genetic programming in selection of suitable features for automatic modulation recognition. Automatic modulation recognition is one of the essential components of modern receivers. In this regard, selection of suitable features may significantly affect the performance of the process. Simulations were conducted with 5db and 10db SNRs. Test and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied sciences

سال: 2021

ISSN: ['2076-3417']

DOI: https://doi.org/10.3390/app11031327